CONVERSION TABLES AND FACTORS

OR PINTS—LITRES

Litres to U.S. Gallons x 0.26417

LITRES—PINTS

(8 Pints = 1 Imperial Gallon)

Litres					Pints
0.5682	454		I	 	1.7598
1.1365			2	 	3.5196
1.7047			3	 	5.2794
2.2730			4	 	7.0392
2.8412			5	 	8.7990
3.4095			6	 	10.5588
3.9777			7	 	12.3186
4.5460			8	 	14.0784
5.1142			9	 	15.8382
5.6852			10	 	17.5980
6.2507			II	 	19.3578
. 6.8189			12	 	21.1176
7.3872			13	 	22.8774
7.9554			14	 	24.6372
8.5237			15	 	26.3970
9.0919			16	 	28.1568
9.6602			17	 	29.9166
10.2284			18	 	31.6764
10.7967			19	 	33.4362
11.3649			20	 	35.1960
11.9332			21	 	36.9558
12.5014			22	 	38.7156
13.0696	2 5		23	 	40.4754
13.6379			24	 	42.2352
14.2061			25	 	43.9950
14.7744			26	 	45.7548
15.3426			27	 	47.5146
15.9109			28	 	49.2744
16.4791			29	 	51.0342
17.0474			30	 	52.7940
17.6156			31	 	54.5538
18.1839			32	 	56.3136
18.7521			33	 	58.0734
19.3203			34	 	59.8332
19.8886			35	 	61.5930
20.4568			36	 	63.3528
21.0251			37	 	65.1126
21.5933			38	 	66.8724
22.1616			39	 	68.6322
22.7298			40	 	70.3920
23.2981			41	 	72.1518
23.8663			42	 	73.9116
24.4346			43	 	75.6714
25.0028			44	 	77.4312
25.5710		9	45	 	79.1910
26.1393			46	 	80.9508
26.7075			47	 	82.7106
27.2758			48	 	84.4704
27.8440			49	 	86.2302
28.4123			50		87.9900

LITRES—PINTS

(8 Pints = 1 Imperial Gallon)

Litres					Pints
28.9805		 51			89 · 7498
29.5488		 52			91.5096
30.1170		 53			93.2694
30.6853		 54			95.0292
31 · 2535		 55			96.7890
31.8217		 56			98.5488
32 · 3900		57			100.3086
32.9582		 58			102.0682
33.5265		 59			103.8282
		 60			105.5880
34.0947		 61		•••	
34 · 6630					107.3478
35.2312		 62	• • • •		109.1076
35.7995		 63			110.8674
36.3677		 64		• • • •	112.6272
36.9360		 65			114.3870
37.5042		 66			116.1468
38.0724		 67			117.9066
38.6407		 68			119.6662
39.2089		 69			121 · 426
39.7772		 70			123.1860
40.3454		 71			124.9458
40.9137		 72		*	126.7050
41.4819		 73			128.465
42.0502		 74			130.225
42.6184		75			131.9850
43 · 1867		 76			133.744
43 7549		 77			135.5040
		 78			137 264
44.3231					
44.8914		 79			139.024
45.4596		 80			140.7840
46.0279		 81			142.543
46.5961		 82			144.3030
47.1644		 83			146.063
47.7326		 84			147.823
48.3009		 85			149.583
48.8691		 86			151.342
49.4373		 87			153.102
50.0056		 88			154.862
50.5738		 89			156.622
51 · 1421		 90			158.3820
51.7103		 91			160.141
52.2786		 92			161.901
52.8468		 93			163.661.
53.4151		94			165.421
53.9833		 95			167 · 181
		 95			168.940
54.5516					170.700
55.1198		 97			
55.6880		 98			172.460
56 · 2563	• • • • • • • • • • • • • • • • • • • •	 99			174.220
56.82454		 100			175.9800

CONVERSION TABLES AND FACTORS

KILOGRAMMES PER SQ. CENTIMETRE— POUNDS PER SQ. INCH

OR

POUNDS PER SQ. INCH— KILOGRAMMES PER SQ. CENTIMETRE

KG./SQ. CM.—LB./SQ. IN.

Kg./sq. cm.						Lb./sq. in.
0.0703			I			14.2233
0.1406			2			28.45
0.2109			3			42.67
0.2812			4			56.89
0.3515			5			71.12
0.4218			6			85.34
0.4921			7			99.56
0.5625			8			113.79
0.6328			9			128.01
0.7031			10			142.23
0.7734			11			156.46
0.8437			12			170.68
0.9140		•••	13			184.90
0.9843		• • • •	14			199.13
1.0546			15 16	•••		213.35
1 · 1249					•••	227.57
1.1952			17			241.80
1 · 2655			18			256.02
1.3358	• • • •	• • • •	19		• • • •	270.24
1.4061			20			284.47
1.4764		• • • •	21			298.69
1.5467			22			312.91
1.6171			23			327.14
1 · 6874			24			341.36
1.7577			25			355.58
1.8280			26			369.81
1 · 8983			27			384.03
1.9686			28			398.25
2.0389			29			412.48
2.1092			30			426.70
2.1795			31			440.92
2.2498			32			455.15
2.3201			33			469.37
2.3904			34			483.59
2.4607			35			497.82
2.5310			36			512.04
2.6014			37			526.26
2.6717			38			540.49
2.7420			39			554.71
2.8123			40			568.93
2.8826			41			583.16
2.9529			42	0		597 · 38
						611.60
3.0232			43			625.83
3.0935			44			
3.1638			45			640.05
3.2341			46			654.27
3.3044			47	•••		668 - 50
3·3747 3·4450			48			682.72
			49			696.94

Driving Instructions

The Rolls-Royce Automatic Gearbox is more than just a mechanism which automatically adjusts the gear ratios according to conditions of speed and load. An overriding control is provided which enables the driver to exercise his own judgment and desires in regard to the gear ratios to be selected, and an understanding of what is possible greatly enhances the pleasure to be derived from driving the car.

No automatic mechanism, however good, has the power of anticipation, but the driver can see ahead and he has the means for overriding the automatic mechanism when desired.

If the driver so desires, he can leave everything to the automatic gearbox, and gear changes will occur at the theoretically correct moment in terms of speed and load. Obviously, however, road or traffic conditions may be such that the theoretically correct moment of gear change may be undesirable or may be unexpected or perhaps delayed, and it is for this reason that the overriding control is provided to enable the driver to enforce a gear change as and when desired.

The driver should, therefore, first familiarise himself with the approximate speeds at which the automatic changes occur. These changes are as follows:

	UP CHANGES (m.p.h.)						
	I2	2—3	3-4				
Light throttle	 6	II	20				
Full throttle	 18	31	65				

It will be noted that greater throttle opening causes the changes to be delayed progressively, therefore an up-change can be induced by the driver at any speed within these limits by easing the foot off the throttle pedal at the moment an up-change is desired. With a little practice a driver can, by judicious use of the throttle pedal, permit the automatic mechanism to make completely smooth and unobtrusive changes.

The owner-driver who wishes occasionally to indulge in a very fast get-away will obtain maximum acceleration by allowing the automatic gearbox to make full throttle changes throughout the speed range.

The automatic down-changes at light throttle will normally occur at the following speeds:

The driver should recognise that the down-changes will always occur at approximately these speeds when slowing down, but it will be found that the changes occur quite smoothly, although it is well to remember that as the speed falls to 9 m.p.h. the 3—2 change will occur which involves an appreciable reduction in gear ratio, and the smoothest change will result if the throttle opening is kept to the minimum.

In traffic which enforces for any length of time speeds between 6 and 25 m.p.h., the driver can avoid the continual changes which might occur between ranges 3 and 4 by placing the hand lever in position 3. Similarly, in traffic which enforces an even slower rate of progress, the hand lever should be placed in position 2, which will avoid unnecessary changes to and from the higher ratios.

For normal cruising on the open road the hand lever should be left in position 4, but the driver will discover that the most perfect and smooth gear changes between top and third can be made with extreme ease and rapidity by moving the hand lever between ranges 3 and 4. Completely imperceptible changes can be made if the throttle is at the same time adjusted to suit. The best changes occur at light throttle openings. The driver is encouraged to make the fullest use of this gear change in exactly the same way that he would with a normal gearbox. Overtaking other traffic can be accomplished at the desired throttle opening with the minimum amount of fuss and with the greatest ease.

For full throttle acceleration in an emergency, the driver can immediately obtain a lower gear by pressing the accelerator pedal hard down onto its stop. Full throttle down-changes are not usually required except in an emergency, and the driver will, in most cases, prefer to make full use of the hand lever.

SECOND SPEED START

It may sometimes be extremely desirable to hold the car indefinitely in 2nd gear as, for instance, when negotiating very slippery surfaces or when mountain climbing. A device has been incorporated which holds the shift valves in 2nd gear whenever the hand lever is placed in range 2. In this position, the car will start from rest in 2nd gear, and will stay in 2nd gear until the hand lever is moved to a higher range. The device is useful also when descending very steep hills and it is desired to use the engine as a brake.

When climbing or negotiating a hairpin in fixed 2nd gear, it is useful to remember that 1st gear is immediately available if suddenly required by operating the kick down valve which is obtained by pressing the throttle pedal as far as it will go. Remember also that it is possible to overrev. the engine in fixed 2nd as in this range there is no safety up-change.

PARKING LOCK

A most efficient lock is provided in the design of the gearbox. This operates when the hand lever is placed in position 'R' and the engine switched off with the car stationary. The car will not move even on the steepest gradients, but naturally it will be essential to apply the brakes firmly when it is desired to start the engine as the engine will not start up until the hand lever is moved to 'N', and no parking lock will then be available.

MANŒUVRING

The fluid coupling and low gear ratios of 1st and Reverse may sometimes make it a little difficult to judge precisely the correct engine revolutions required to move the car a few inches backwards or forwards, and it will be found that manœuvring in confined spaces is more easily accomplished if a little extra load is applied to the fluid coupling by light pressure on the brakes.

COLD STARTING

When starting from cold it should always be remembered that the automatic carburetter system will cause the engine to start up initially at a fairly fast idle speed, and therefore it is essential always to apply the brakes firmly before starting up, and especially when engaging Reverse from cold as the driver then has to pass through the forward gear ratios to obtain Reverse, and the car may move forward if the brake is not applied.